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Abstract.
This chapter asserts that, in current state-of-the-art symbolic regression

engines, accuracy is poor. That is to say that state-of-the-art symbolic re-
gression engines return a champion with good fitness; however, obtaining a
champion with the correct formula is not forthcoming even in cases of only
one basis function with minimally complex grammar depth.

Ideally, users expect that for test problems created with no noise, using
only functions in the specified grammar, with only one basis function and some
minimal grammar depth, that state-of-the-art symbolic regression systems
should return the exact formula (or at least an isomorph) used to create the
test data. Unfortunately, this expectation cannot currently be achieved using
published state-of-the-art symbolic regression techniques.

Several classes of test formulas, which prove intractable, are examined
and an understanding of why they are intractable is developed. Techniques
in Abstract Expression Grammars are employed to render these problems
tractable, including manipulation of the epigenome during the evolutionary
process, together with breeding of multiple targeted epigenomes in separate
population islands.

A selected set of currently intractable problems are shown to be solvable,
using these techniques, and a proposal is put forward for a discipline-wide pro-
gram of improving accuracy in state-of-the-art symbolic regression systems.

Key words: Abstract Expression Grammars, Differential Evolution, Gram-
mar Template Genetic Programming, Genetic Algorithms, Particle Swarm,
Symbolic Regression.
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1 Introduction

The discipline of Symbolic Regression (SR) has matured significantly in the
last few years. There is at least one commercial package on the market for
several years http://www.rmltech.com/. There is now at least one well doc-
umented commercial symbolic regression package available for Mathmatica
www.evolved-analytics.com. There is at least one very well done open source
symbolic regression package available for free download http://ccsl.mae.cornell.edu/eureqa.
In addition to our own ARC system (Korns 2010), currently used internally
for massive (million row) financial data nonlinear regressions, there are a num-
ber of other mature symbolic regression packages currently used in industry
including (Smits 2010) and (Castillo 2010). Plus there is an interesting work
in progress by (McConaghy 2009).

During the process of enhancing our ARC system with the latest thinking
in published symbolic regression papers, we ran across several test problems
for which our system failed to return the correct formula. Normally this is
not surprising in large scale regression with much noise; however, these test
problems were generated with no noise and were fairly simplistic formulas of
only one basis function with minimally complex grammar depth.

After further study it is now apparent that there are very large numbers of
simple test formulas against which current state-of-the-art symbolic regression
systems suffer poor accuracy. For these intractable problems state-of-the-art
symbolic regression engines fail to return a champion with the correct formula.

This is a serious issue for several reasons. First, users expect to receive a
correct formula when inputting a simple test case. When a correct formula
is not forthcoming, user interest and trust in the symbolic regression system
wanes. Second, if symbolic regression cannot return a correct formula in even
simplistic test cases then symbolic regression loses its differentiation from
other black box machine learning techniques such as support vector regression
or neural nets. Third, from its very inception (Koza 1992) symbolic regression
has been represented as a technique for returning, not just coefficients, but
a correct formula. If this claim cannot be fulfilled by independent scientific
review, a serious reputational issue will develop and research money will flow
in other directions.

This chapter begins by outlining the accuracy issue. A simple symbolic
regression grammar of fifteen obvious mathematical functions is established.
All test cases are limited to a single basis function of no more than three
grammar nodes deep. For all test cases the data is limited to ten thousand
sample points, of five features each, and absolutely no noise. Even with these
very severe limitations, large numbers of simple formulas are shown to be
intractable.

The chapter continues with an examination of techniques which allow ARC
to solve these previously intractable problems. The chapter closes with a pro-
posal for a discipline wide approach to solving our symbolic regression accu-
racy issues.
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1.1 Testing Regimen

Our testing regimen uses only statistical best practices out-of-sample test-
ing techniques. We test each of the test cases on matrices of 10000 sample
points and five features with absolutely no noise. Each sample point x =
<x1,x2,x3,x4,x5> is associated with a dependent variable y. The data is
constructed so that there is an exact functional relationship between each
sample point and each associated dependent variable: F(x) = y.

For each test, a training matrix is filled with pseudo random numbers be-
tween -50 and +50 (each test is random but reproducible on demand). The test
case target functions, F, are limited to one basis function whose maximum
depth is three grammar nodes. The target function for the test case is applied
to the training matrix to compute the dependent variable. The symbolic re-
gression system is trained on the training matrix to produce the regression
champion. Following training, a testing matrix is filled with random numbers
between -50 and +50. The target function for the test case is applied to the
testing matrix to compute the dependent variable. The regression champion
is evaluated on the testing matrix for all scoring (i.e. out of sample testing).

Our fitness measure is normalized least squared error (NLSE) as defined
in (Korns 2009). Normalized least squared error is the least squared error
value divided by the standard deviation of Y. A returned regression champion
formula is considered accurate if the normalized least squared error (NLSE)
on the testing run is .0001 or below. This approach allows isomorphs, such
as (x1+x3) and (x3+x1), to be included in the accurate category. It also
allows formulas to be considered accurate if they are not isomorphic but are
so statistically close as to be approximately identical.

All results in this paper were achieved on a workstation computer, specif-
ically an Intel Core 2 Duo Processor T7200 (2.00GHz/667MHz/4MB), run-
ning our Analytic Information Server software generating Lisp agents that
compile native code using the on-board Intel registers and on-chip vector pro-
cessing capabilities so as to maximize execution speed. Details can be found
at http://www.korns.com/Document Lisp Language Guide.html. Furthermore,
our Analytic Information Server is available in an open source software project
at aiserver.sourceforge.net.

All tables have omitted run timings in favor of numbers of candidate Well
Formed Formulas (WFFs) examined. This allows the comparison of results
across disparate computer systems and between disparate symbolic regression
packages as well as cloud computing systems. Furthermore, numbers of indi-
viduals (WFFs) examined is often proposed as a fundamental measure of the
actual work involved in a symbolic regression search, and is closely related to
Koza’s concepts of computational effort (Koza 1992).

1.2 A Tutorial on Abstract Expression Grammars

In standard Koza-style tree-based Genetic Programming (Koza 1992) the
genome and the individual are the same Lisp s-expression which is usually
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illustrated as a tree. Of course the tree-view of an s-expression is a visual
aid, since a Lisp s-expression is normally a list which is a special Lisp data
structure. Without altering or restricting standard tree-based GP in any way,
we can view the individuals not as trees but instead as s-expressions.

• (S1) depth 0 binary tree s-exp: 3.45
• (S2) depth 1 binary tree s-exp: (+ x2 3.45)
• (S3) depth 2 binary tree s-exp: (/ (+ x2 3.45) (* x0 x2))
• (S3) depth 2 irregular tree s-exp: (/ (+ x2 3.45) 2.0)

In standard GP, applied to symbolic regression, the non-terminal nodes
are all operators (implemented as Lisp function calls), and the terminal nodes
are always either real number constants or features. An important point to
remember is that we are not making a substantive change in standard GP.
We are simply refocusing our view of the individuals as s-expressions.

The maximum depth of a GP individual is limited by the available compu-
tational resources; but, it is standard practice to limit the maximum depth of
a GP individual to some managable limit at the start of a symbolic regression
run.

Given any selected maximum depth k, it is an easy process to construct
a maximal binary tree s-espression Uk, which can be produced by the GP
system without violating the selected maximum depth limit. As long as we
are reminded that each f represents a function node while each t represents a
terminal node, the construction algorithm is simple and recursive as follows.

• U0: t
• U1: (f t t)
• U2: (f (f t t) (f t t))
• U3: (f (f (f t t) (f t t)) (f (f t t) (f t t)))
• Uk: (f Uk−1 Uk−1)

Any individual produced by the standard GP system may be smaller than,
may be irregular, but will not be larger than Uk.

For the purposes of this tutorial section, we shall select the maximum
depth limit to be k = 3. We will only allow two features x0 x1 and the
IEEE double real number constants in each terminal node. Our set of valid
functions will be the binary operators: + - * and /. Furthermore, to make
node identification easier, we shall enumerate each node in U3, and revert to
more easily read functional notation as follows.

• U3: f0(f1(f2(t0,t1),f3(t2,t3)),f4(f5(t4,t5),f6(t6,t7)))

An example of a individual, which fits the form of U3 is as follows.
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• (I1): (* (/ (- x0 3.45) (+ x0 x1)) (/ (- x1 1.31) (* x0 x1)))

Up until this point we have not altered or restricted standard GP in any
way; but, now we are about to make a slight alteration.

It is a little difficult, in (I1), to tell which * operator is associated with
which function node in U3, so we are going to add an annotation to the
individual (I1). We are going to restore the enumerated function nodes in
U3, and we are going to add a function chromosome vector to (I1). The
individual (I1) will now have two components: an s-expression and a function
chromosome as follows.

• (I1d,s-exp): (f0 (f1 (f2 x0 3.45) (f3 x0 x1)) (f4 (f5 x1 1.31) (f6 x0 x1)))
• (I1d,f-chrome): (* / - + / - *)

In order to make (I1) evaluate as it used to, we will need to make one ad-
ditional slight alteration in the definition of the enumerated function nodes.
From now on the function notation fn will be evaluated as: call the nth func-
tion found in the function chromosome vector. Hence, in (I1), f0 will call *,
f1 will call /, f2 will call -, etc. We still have not restricted standard GP in
any way. The same population operators work in the same way they always
worked. However, we have added a new annotation to each individual and
added a level of indirection to each function evaluation.

In the same vein we will add a constant chromosome vector for each con-
stant reference in U3, so that the individual (I1) now has a new annotation,
and each abstract constant reference cn evaluates to: return the nth constant
found in the constant chromosome vector. The individual (I1) will now have
three components: an s-expression, a function chromosome, and a constant
chromosome as follows.

• (I1c,s-exp): (f0 (f1 (f2 x0 c1) (f3 x0 x1)) (f4 (f5 x1 c5) (f6 x0 x1)))
• (I1c,f-chrome): (* / - + / - *)
• (I1c,c-chrome): (0 3.45 0 0 1.31 0 0)

Also in the same vein we will add a variable chromosome vector for each
feature reference in U3, so that the individual (I1) now has a new annotation,
and each abstract feature reference vn evaluates to: return the nth feature
found in the feature chromosome vector. The individual (I1) will now have four
components: an s-expression, a function chromosome, a constant chromosome,
and a variable chromosome as follows.

• (I1b,s-exp): (f0 (f1 (f2 v0 c1) (f3 v2 v3)) (f4 (f5 v4 c5) (f6 v6 v7)))
• (I1b,f-chrome): (* / - + / - *)
• (I1b,c-chrome): (0 3.45 0 0 1.31 0 0 0)
• (I1b,v-chrome): (x0 x0 x0 x1 x1 x0 x0 x1 )
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Finally in the same vein we will add a term chromosome vector for each
term reference in U3, so that the individual (I1) now has yet another a new
annotation, and each abstract term reference tn evaluates to: examine the nth
value found in the term chromosome vector. If the term value is 0, then return
the nth value in the variable chromosome; otherwise, return the nth value in
the constant chromosome. The individual (I1) will now have four chromo-
somes: a function chromosome, a constant chromosome, a variable chromo-
some and a term chromosome; and a standard abstract functional-expression.
Plus the original concrete s-expression will be retained as follows.

• (I1a,f-exp): f0(f1(f2(t0,t1),f3(t2,t3)),f4(f5(t4,t5),f6(t6,t7)))
• (I1a,f-chrome): (* / - + / - *)
• (I1b,c-chrome): (0 3.45 0 0 1.31 0 0 0)
• (I1b,v-chrome): (x0 x0 x0 x1 x1 x0 x0 x1 )
• (I1a,t-chrome): (0 1 0 0 0 1 0 0)
• (I1a,concrete): (* (/ (- x0 3.45) (+ x0 x1)) (/ (- x1 1.31) (* x0 x1)))

At this point in the tutorial take a brief pause. Examine the final abstract
annotated version (I1a) above and compare it to the original concrete version
(I1). Walk through the evaluation process for each version. Satisfy yourself
that the concrete s-expression (I1) and the abstract annotated (I1a) both
evaluate to exactly the same interim and final values.

We have made no restrictive nor destructive changes in the orginal indi-
vidual (I1). Slightly altered to handle the new indirect references and the new
chromosome annotations, any standard GP system will behave as it did before.
Prove it to yourself this way. Take the annotated individual (I1a), and replace
each indirect reference with the proper value from the proper chromosome.
This converts the abstract annotated (I1a) back into the concrete s-expression
(I1). Let your standard GP system operate on (I1) any way it wishes to pro-
duce a new individual (I2). Now convert (I2) back into an abstract annotated
(I2a) with the same process we used to annotate (I1).

We make three more slight alterations and enhancements in order to
complete this tutorial on Abstract Expression Grammars (AEGs). First, we
slightly alter the evaluation process for any uniary functions (such as cos log
etc.) such that any excess arguments are simply ignored. Second, we add a
special uniary operator (lpass) which simply returns its first argument (left-
most) and, of course, ignores any excess arguments. Our valid functions are
now: + - * / and lpass. Third, we no longer think of evaluating (I1a) the
way we evaluate (I1). Instead we borrow important grammar template con-
cepts from (O’Neill 2003) (Mackay 2010) and refocus our view of (I1a) as
an abstract expression grammar wherein the f-expression and chromosomes
are evaluated as grammar rules and used to produced the concrete annotation
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(I1a,concrete). Any changes in the chromosomes cause the individual to pro-
duced a new appropriate concrete annotation matching the new chromosome
contents.

In summary we have simply added extra information as annotations and
we’ve even kept the original s-expression. The standard GP system has not
been restricted or limited in any way and may continue to operate much as
it did before - albeit with these extra annotations. We’ve added an abstract
functional-expression containing indirect: function references fn, constant ref-
erences cn, variable references vn, and term references tn. We’ve also added
annotations for four chromosomes for: functions, constants, variables, and
terms.

Furthermore, given a selected maximum depth limit k, our lpass gram-
mar rule allows the maximal binary tree s-expression Uk to generate ANY
s-epression which the original GP system can generate up to the selected depth
limit. Clearly the (I1a) individual, shown above, can express any maximal 3-
deep s-expression with appropriate changes to its chromosomes. But, what
about smaller and irregular s-expressions which are not the same maximal
shape as Uk? The lpass grammar rule allows all smaller and irregular s-
expressions to be generated as in the examples below.

• (I2a,f-exp): f0(f1(f2(t0,t1),f3(t2,t3)),f4(f5(t4,t5),f6(t6,t7)))
• (I2a,f-chrome): (lpass lpass lpass lpass lpass lpass lpass)
• (I2b,c-chrome): (0 0 0 0 0 0 0 0)
• (I2b,v-chrome): (x0 x0 x0 x0 x0 x0 x0 x0)
• (I2a,t-chrome): (0 0 0 0 0 0 0 0)
• (I2a,concrete): x0

• (I3a,f-exp): f0(f1(f2(t0,t1),f3(t2,t3)),f4(f5(t4,t5),f6(t6,t7)))
• (I3a,f-chrome): (lpass / * lpass lpass lpass lpass)
• (I3b,c-chrome): (0 4.2 0 0 0 0 0 0)
• (I3b,v-chrome): (x0 x0 x1 x0 x0 x0 x0 x0)
• (I3a,t-chrome): (0 1 0 0 0 0 0 0)
• (I3a,concrete): (/ (* x0 4.2) x1)

Because of this property we speak of Uk as a universal Abstract Expression
to depth k.

Space restrictions prevent us from expanding on this brief tutorial. The
basics of Abstract Expression Grammars and Universal Abstract Expressions
are described in (Korns 2010). Reviewing Abstract Expression Grammars is
strongly advised before continuing with this chapter.

With all this new information, we have a number of new options. We can
keep our GP system operating as it did before; or, now that we have all the



8 Michael F. Korns

constants in one vector, we can apply swarm operators to the constants for
better constant mangement. Similarly we can apply genetic algorithm opera-
tions to the function, variable, and term vectors. If we decide to upgrade to
a more complicated context sensitive grammar, many standard GP popula-
tion operators become much easier with extra annotations. Finally when users
ask for constraints on the search output and search process, user constraints
become much easier with added annotations.

1.3 A Simple Symbolic Regression Grammar

In our symbolic regression research with financial data we set our maximum
depth limit quite high. We allow many basis functions, and we allow many
data features. However, for this chapter, we will set our maximum depth limit
to only three and will allow only one basis function. Our purpose is to demon-
strate that absolute accuracy issues arise quite quickly with current published
symbolic regression techniques - even with simple problems. One would never
dream of attacking an industrial regression problem with maximum depth
set to three and only one basis function; but, that makes the appearance of
absolute accuracy problems even more disappointing.

In this chapter we will create a series of simple test cases - all of which
have absolute solutions within a maximum s-expression depth of three, only
five features, and all with only one basis function. Theoretically each of our
test cases should be easily solved by any GP symbolic regression system -
even when set to these low depth and basis function limits. Unfortunately, we
discovered that our ARC symbolic regression system could not solve ALL of
these simple test cases.

Our simple symbolic regression grammar has the following basic elements.

• Real Numbers: 3.45, -.0982, 100.389, and all other real constants.
• Features: x0, x1, x2, x3, and x4 a maximum of five features.
• Binary Operators: +, -, *, /
• Unary Operators: sqrt, square, cube, cos, sin, tan, tanh, log, exp
• lpass Operator: lpass(expr,expr) returns the left expression unaltered
• rpass Operator: rpass(expr,expr) expr returns the right expression unal-

tered

Our concrete numeric expressions are C-like expressions containing the el-
ements shown above and ready for compilation. All test cases are solved with
univariate regression because, in this chapter, we limit our study to one basis
function intractable problems. Our lpass and rpass operators are idempo-
tents which allow our grammar to be used with AEG universal abstract ex-
pressions (also all unary operators, should they receive two arguments, operate
on the left expression and ignore the right expression). Our basic expression
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grammar is functional in nature, therefore all operators are viewed grammat-
ically as function calls. The final regression champion will be the compilation
of a basic concrete expression such as:

• (E1): f = (log(x3)/sin(x2*45.3))

In order to be considered accurate the NLSE of the regression champion,
on the testing data (see Testing Regimen), must be .0001 or below.

The universal abstract expression U3, used for all test cases, consists of
one basis function with a maximum depth of three function applications, as
follows.

• (E2): f0(f1(f2(t0,t1),f3(t2,t3)),f4(f5(t4,t5),f6(t6,t7)))

By way of a review example if, in the AEG (E2), we replace f0 with
cos, f1 with lpass, f2 with *, t0 with 3.45, and t1 with x2, then (E2) gen-
erates the following WFF candidate with the following concrete annotation
cos(3.45*x2) ready for compilation.

• (E3a,f-exp): f0(f1(f2(t0,t1),f3(t2,t3)),f4(f5(t4,t5),f6(t6,t7)))
• (E3a,f-chrome): (cos lpass * lpass lpass lpass lpass)
• (E3b,c-chrome): (3.45 0 0 0 0 0 0 0)
• (E3b,v-chrome): (x0 x2 x0 x0 x0 x0 x0 x0)
• (E3a,t-chrome): (1 0 0 0 0 0 0 0)
• (E3a,concrete): cos(3.45*x2)

Even though our test cases are as limited as they are (we have purposely
limited them in this chapter so we can focus on absolute accuracy issues), the
size of the search space is quite large. This is one of the main issues faced by
symbolic regression systems. Even simple test problems can have very large
search spaces.

Our universal abstract expression U3 has seven abstract function place-
holders. Each abstract function placeholder may hold one of fifteen function
values (4 binary operators, 9 uniary operators, lpass, and rpass). Our univer-
sal abstract expression also has eight abstract term placeholders. Each term
placeholder may hold one of 264 IEEE double constant values or one of the
five features. On test cases with five data features the size of the search space
is 10162. The presence of constants does make the search space much larger;
however, even if we do not allow constants, thus limiting each term to features
only, the size of the search space is still 1014.

By way of comparison, the number of quarks in our universe is estimated to
be roughly in the neighborhood of 1080. The age of our universe in nanoseconds
is estimated to be roughly in the neighborhood of 1023, and the age of our
universe in seconds is estimated to be roughly in the neighborhood of 1014.
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So theoretically, if we could evaluate each individual in a second, we might be
able to exhaustively search the restricted space (with no constants allowed);
but, it would require approximately the age of the universe to complete the
exhaustive search.

1.4 ARC System Architecture

The ARC system is now restructured into three nested collections (pools). The
first collection is the pool of islands. There may be more than one population
island and the number of population islands may grow or wane during an
evolutionary run (the search). Inside each island is the second collection: a
survivor pool. In each population island there may be more than one surviving
individual (WFF) and, in each island, the number of individuals may grow or
wane during the search. Finally, inside each individual is the third collection:
a swarm constant pool. The number of constants in each swarm constant pool,
inside each individual, may grow or wane during the search.

By way of further explanation, let me point out that it is often the case
that several individuals, in an island population, will be identical in every way
except the values of their real number constants as shown below with (E4)
and (E6). Notice how the survivor pool is over-supplied with two individuals
(which are essentially the same WFF - except for constant values); and, it
tends to get much worse with entire survivor pools exclusively dominated by
essentially the same WFF forms differing only in constant values.

• (E4): cos(3.45*x2)
• (E5): sin(x3)/exp(x1*4.5)
• (E6): cos(-5.1*x2)
• (E7): sqrt(x4/x3)-exp(-log(x2))

ARC thinks of individuals (E4) and (E6) as constant homeomorphs and
automatically combines them into an abstract constant homeomorph. All con-
crete real number constant references are replaced with abstract constant
references, and the appropriate constant vectors are stored in a constant pool
inside the individual as shown below.

• (E8): cos(c0*x2), constant pool = (3.45, -5.1)
• (E5): sin(x3)/exp(x1*4.5)
• (E7): sqrt(x4/x3)-exp(-log(x2))

The ARC system supports operations on each of its nested collections.
The swarm operators, such as particle swarm (Eberhart 2001) and differential
evolution (Price 2005), act upon the constant pools inside each individual.
The population operators, such as mutation and crossover (Man 1999), act
upon the individuals within each island population. The island operators act
upon the islands themselves.
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By way of further explanation, the ARC island operators (breeders) are
algorithms, such as Age Layered Population Structures (Hornby 2006) and
Age-Fitness Pareto (Schmidt 2010), which govern the sorting, pruning, and
synchronizing of fitness and survival within each island population plus any
migration between islands. ARC currently supports several island operators.
The epoch breeder initially fills its empty island with a large number of random
individuals then does nothing unless the population grows stagnant at which
time it kills off every individual and begins again. The age-fitness breeder
implements a version of the age-fitness pareto algorithm explained in (Schmidt
2010). The alps breeder implements a version of the Age-Layered Population
Structure algorithm explained in (Hornby 2006) altered to operate inside a
single island. The weed breeder initially fills its empty island with a large
number of random individuals then does nothing unless the population grows
stagnant at which time it kills off every individual over a specified age. All
of these island operators introduce a small number of random individuals at
the start of each generation. Additionally, there is a special national island
which records the best (most fit) individuals ever seen at any time during the
search. The individuals collected in the national island are the answers which
ARC provides the user at the termination of the search.

Finally, there is a specification language which guides the search process,
states the goal formula, sets up disparate islands for breeding individuals, and
specifies the island operators and search constraints.

In summary a bullet point list of the main architectural components of
ARC is as follows

• islands: a flexible number of islands for breeding individuals
• survivors: a flexible number of individuals in each island
• swarm: a flexible number of constants inside each individual
• swarm operators: act on the constant pools inside each individual
• population operators: act on the individual individuals in each island
• island operators: act on the islands themselves
• specification language: guides the entire search process

1.5 Search Specification Language

In (Korns 2010) a number of important concepts are developed including:
abstract expression grammars (AEG), universal abstract expressions, a new
prototype search specification language inspired by the SQL/database-search
relationship, and the concept of epigenome constraints to focus the search
process in specific island populations. In this chapter, we will employ these
concepts to help solve previously intractable problems.

Our universal abstract expression (E2), can be further constrained with
where clauses. Each where clause sets up an independent island population,
with a possibly further constrained epigenome, as follows.
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• (E9): f0(f1(f2(t0,t1),f3(t2,t3)),f4(f5(t4,t5),f6(t6,t7)))
• (E9.1): island(alps,256,50)
• (E9.2): where island(alps,500,50)
• (E9.3): where f0(cos,sin,tan) v0(x1,x4) c1(1.0)
• (E9.4): where et() ec()

Each where clause is important both because of the choice of breeder and
island population size, but also because the increased search focus and re-
duced search space size possible. For example, (E9.1) sets the default size of
all islands to 256 individuals, 50 constants, and the breeder to Age-Layered
Population Structure. Where clause (E9.2) overrides the defaults so that is-
land one has 500 individuals, 50 constants, and the breeder to Age-Layered
Population Structure and no constraints. The search space size is 10162. Where
clause (E9.3) constrains island two with f0 to the three trig functions, v0 to
x1 and x4, and c1 to 1.0. All individuals in island two will be constrained as
specified, and the search space size is reduced to 10159. Where clause (E9.4)
constrains island three to have no constants - effectively limiting search to
features only. All individuals in island three will be constrained as specified,
and the search space size is reduced to 1014.

In this chapter, our approach to solving intractable problems will employ
intelligent choices of multiple islands, breeders, and epigenome constraints.

1.6 Example Test Problems

In this chapter we list the example test problems which we will address. All
of these test problems are no more than three grammar nodes deep (Note:
in problem P10, quart(x) = x4). All test problems reference no more than
five input features. Some are easily solved with current Symbolic Regression
techniques. Others are not so easily solved.

• (P1): y = 1.57 + (24.3*x3)
• (P2): y = 0.23 + (14.2*((x3+x1)/(3.0*x4)))
• (P3): y = -5.41 + (4.9*(((x3-x0)+(x1/x4))/(3*x4)))
• (P4): y = -2.3 + (0.13*sin(x2))
• (P5): y = 3.0 + (2.13*log(x4))
• (P6): y = 1.3 + (0.13*sqrt(x0))
• (P7): y = 213.80940889 - (213.80940889*exp(-0.54723748542*x0))
• (P8): y = 6.87 + (11*sqrt(7.23*x0*x3*x4))
• (P9): y = ((sqrt(x0)/log(x1))*(exp(x2)/square(x3)))
• (P10): y = 0.81 + (24.3*(((2.0*x1)+(3.0*square(x2)))/((4.0*cube(x3))+(5.0*quart(x4)))))
• (P11): y = 6.87 + (11*cos(7.23*x0*x0*x0))
• (P12): y = 2.0 - (2.1*(cos(9.8*x0)*sin(1.3*x4)))
• (P13): y = 32.0 - (3.0*((tan(x0)/tan(x1))*(tan(x2)/tan(x3))))
• (P14): y = 22.0 - (4.2*((cos(x0)-tan(x1))*(tanh(x2)/sin(x3))))



Accuracy in Symbolic Regression 13

• (P15): y = 12.0 - (6.0*((tan(x0)/exp(x1))*(log(x2)-tan(x3))))

As a discipline, our goal is to demonstrate that all of the 10162 possible
test problems can be solved after a reasonable number of individuals have
been evaluated. This is especially true since we have limited these 10162 possi-
ble test problems to target functions which are univariate, reference no more
than five input features, and which are no more than three grammar nodes
deep. On the hopeful side, if the Symbolic Regression community can achieve
a demonstration of absolute accuracy, then the same rigorous statistical in-
ferences can follow a Symbolic Regression as now follow a Linear Regression,
which would be a significant advancement in scientific technique.

As a base line for current state-of-the-art symbolic regression technique,
we use aged layered population structure (ALPS) with an island population
size of 256. If ARC runs all the test problems with a single ALPS island,
we see that, at least with ARC, we are far from our accuracy goal. In fact
we quickly demonstrate that there are large sets of test problems which are
intractable with current state-of-the-art ALPS symbolic regression.

The base line search specification is as follows, and the search results are
shown in Table 1.

• (E10): f0(f1(f2(t0,t1),f3(t2,t3)),f4(f5(t4,t5),f6(t6,t7)))
• (E10.1): where island(alps,256,50)

Table 1. Results with one ALPS island

Test WFFs Train-NLSE Train-TCE Test-NLSE Test-TCE
P01 .14K 0.00 0.00 0.00 0.00
P02 .96K 0.00 0.00 0.00 0.00
P03 74.90K 0.00 0.00 0.00 0.00
P04 0.34K 0.00 0.00 0.00 0.00
P05 .94K 0.00 0.00 0.00 0.00
P06 .12K 0.00 0.00 0.00 0.00
P07 82.58K 0.00 0.00 0.00 0.00
P08 1.03K 0.00 0.00 0.00 0.00
P09 71.89K 0.01 0.00 0.97 0.37
P10 85.50K 0.83 0.39 1.00 0.49
P11 81.29K 0.99 0.46 1.00 0.49
P12 89.24 0.99 0.48 1.04 0.50
P13 85.98K 0.81 0.30 1.00 0.93
P14 83.49K 0.53 0.17 1.53 0.47
P15 1.27K 0.00 0.00 0.00 0.00

(Note: the number of individuals evaluated before finding a solution is listed in the
Well Formed Formulas (WFFs) column)
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A number of our test cases are solved very quickly with current state-of-
the-art ALPS symbolic regression. Unfortunately, a number are not solved.
Furthermore, these unsolved example test cases are representative of larger
sets of intractable test problems within the 10162 possible target functions.

Throughout the remainder of this chapter, we will try a number of en-
hanced techniques to improve our search results on the example problems.
These enhanced techniques will include:

• Employing a cloud of islands
• Employing an opening rule book
• Employing a closing rule book

1.7 Employing a Cloud Of Islands

Employing a cloud of islands is one obvious approach to solving more of
our test problems. Of course, employing a cloud of islands will increase the
total number of individuals evaluated; but, those additional individuals will
be evaluated in parallel. With a cloud, we increase our computational effort
by a factor of ten while making some progress on some previously intractable
problems. Unfortunately we see that, at least with ARC, even with a cloud of
islands, performance improves over the base line; but, we are still far from our
accuracy goal. Furthermore we quickly demonstrate that, there remain large
sets of intractable problems even with a cloud of ALPS islands.

The search specification is as follows, and the search results are shown in
Table 2.

• (E11): f0(f1(f2(t0,t1),f3(t2,t3)),f4(f5(t4,t5),f6(t6,t7)))
• (E11.1): where island(alps,256,50)
• (E11.2): where island(alps,256,50)
• (E11.3): where island(alps,256,50)
• (E11.4): where island(alps,256,50)
• (E11.5): where island(alps,256,50)
• (E11.6): where island(alps,256,50)
• (E11.7): where island(alps,256,50)
• (E11.8): where island(alps,256,50)
• (E11.9): where island(alps,256,50)
• (E11.10): where island(alps,256,50)
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Table 2. Results with ten ALPS island

Test WFFs Train-NLSE Train-TCE Test-NLSE Test-TCE
P01 .15K 0.00 0.00 0.00 0.00
P02 3.26K 0.00 0.00 0.00 0.00
P03 804.49K 0.00 0.00 0.00 0.00
P04 .59K 0.00 0.00 0.00 0.00
P05 .25K 0.00 0.00 0.00 0.00
P06 .13K 0.00 0.00 0.00 0.00
P07 187.26K 0.00 0.00 0.00 0.00
P08 5.99K 0.00 0.00 0.00 0.00
P09 97.24K 0.00 0.00 0.00 0.00
P10 763.53K 0.01 0.02 0.99 0.29
P11 774.89K 0.99 0.47 1.00 0.48
P12 812.79K 0.99 0.47 1.04 0.51
P13 624.78K 0.00 0.00 0.00 0.00
P14 454.15K 0.00 0.00 0.00 0.00
P15 .045K 0.00 0.00 0.00 0.00

1.8 Employing an Opening Rule Book

Employing a cloud of islands with a well thought out opening book of search
constraint rules is the next obvious approach to solving more of our test prob-
lems. Of course, employing an opening rule book will increase the total number
of individuals evaluated; but, those additional individuals will be evaluated in
parallel, and each island can be tailored, with constraint rules, to search its
own limited area of expertise for difficult-to-learn patterns that are commonly
encountered.

One very interesting aspect of our experimentation with opening books
is that the resources in many of the islands were successfully concentrated.
Notice that the default survivor population has been reduced from 256 to 10
and the default swarm pool size has been reduced from 50 to 25. Thus we use
nine islands but our computational resources are much less than nine times
those used by a single island general purpose ALPS approach.

Our opening rule book is as follows, and the search results, with our
opening book, are shown in Table 3.

• (E11): f0(f1(f2(t0,t1),f3(t2,t3)),f4(f5(t4,t5),f6(t6,t7)))
• (E11.1): national(10,25)
• (E11.2): island(weed,10,25)
• // Opening Book
• (E11.3): where
• (E11.4): where ec() et()
• (E11.5): where f0(*) f1..6(lpass,*) ef(f1,f2,f3,f4,f5,f6) ec() et()
• (E11.6): where f0(*,square,sqrt,cube,cos,sin,tan,tanh,log,exp) f1..6(lpass,*)



16 Michael F. Korns

• (E11.7): where op(lpass,rpass,*,/,cos,sin,tan,tanh) island(smart,gade,256,25,50)
• (E11.8): where f0(*,cos,sin,tan,tanh) f1..6(lpass,*)
• (E11.9): where f0(cos,sin,tan,tanh) ef(f0,f1,f2,f3) ev(v0,v1,v2,v3) ec(c0,c1,c2,c3)

et(t0,t1,t2,t3)
• (E11.10): where f0,f2,f5(*) f1,f4(cos,sin,tan,tanh) ef(f1,f4) ev(v1,v5) ec(c0,c4)

et() island(smart,256,25,10)
• (E11.11): where f0,f1,f4(+,-,*,/) f2,f3,f5,f6(cos,sin,tan,tanh) ev(v0,v2,v4,v6)

ec() et() island(smart,256,25,10)

A brief explanation of the search constraint rules in our Opening Book
is as follows. Rule (E11.1) tells ARC to apply population operators to the na-
tional island. Rule (E11.2) sets the default island using the weed breeder with
10 individual individuals and 25 constants in its swarm pool. Rule (E11.3) re-
quests an unrestricted search island. Rule (E11.4) requests an unrestricted
search island with no terms and no constants. Rule (E11.5) requests a search
for all possible two, three, and four way cross correlations of features. Rule
(E11.6) requests a search for all possible two, three, and four way cross corre-
lations of features with a possible unary cap. Rule (E11.7) requests a search
of only the restricted trigonometric operators specified. Rule (E11.8) requests
a search for all possible two, three, and four way cross correlations of features
with a possible trigonometric cap. Rule (E11.9) requests a search of only the
restricted trigonometric operators. Rule (E11.10) requests a search of only the
products of trigonometric operators. Rule (E11.11) requests a search of only
the restricted operators specified.

Table 3. Results with an opening book

Test WFFs Train-NLSE Train-TCE Test-NLSE Test-TCE
P01 .06K 0.00 0.00 0.00 0.00
P02 113K 0.00 0.00 0.00 0.00
P03 222.46K 0.00 0.00 0.00 0.00
P04 0.86K 0.00 0.00 0.00 0.00
P05 0.16K 0.00 0.00 0.00 0.00
P06 0.01K 0.00 0.00 0.00 0.00
P07 4.10K 0.00 0.00 0.00 0.00
P08 11.00K 0.00 0.00 0.00 0.00
P09 116.81K 0.00 0.00 0.00 0.00
P10 214.27K 0.83 0.45 1.00 0.46
P11 206.04K 0.99 0.47 1.00 0.49
P12 217.25K 0.99 0.47 1.00 0.49
P13 22.40K5 0.00 0.00 0.00 0.00
P14 9.54K 0.00 0.00 0.00 0.00
P15 1.99K 0.00 0.00 0.00 0.00
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We arrived at this opening book of search constraint rules experimentally.
It has been tailored to the behavior of the ARC system plus the chosen oper-
ators. It has been designed to capture a large number of commonly occurring
test problems without increasing computation resources excessively. Creating
an opening rule book is time consuming; but, it need only be created once
for each SR system and each operator set. Employing an opening book moves
one forward in solving a broad range of test problems with fewer individuals
searched.

Unfortunately we see that, at least with ARC, even with an opening book
we have still not achieved our accuracy goal. In fact employing an opening
book did not significantly improve accuracy over the cloud of ALPS islands;
but, it did reduce the computational resources required to arrive at the same
accuracy.

One polynomial and two of the more complicated trigonometric test prob-
lems continue to resist solution. Largely this is because the sine and cosine
function produce a wavy response surface which makes it very difficult for
ARC to distinguish the local from the global minima.

It has been our experience that attempting to provide more islands and a
much longer search time does not improve the situation. We have run these
problems thorough several months of elapsed time and millions and billions of
individuals evaluated with no significant improvement. When the search space
is 10162, with a very choppy surface, throwing more brute force resources does
not seem to be helpful.

1.9 Employing a Closing Rule Book

Employing a cloud of islands with a well thought out opening and closing
book of search constraint rules is our next approach to solving more of our
test problems. We create a so called smart breeder which initially implements
the same opening book strategy as shown in the previous section. however,
smart maintains a set of closing search constraint rules ready to be used when
the opening book search is not progressing well.

Smart constantly monitors each one of the opening book islands it has
allocated. When an island search is not progressing to its satisfaction, smart
can employ a search constraint rule from its closing rule book. The island is
then co-opted to perform the search specified in the selected closing book
search constraint rule.

Employing a cloud of islands with a well thought out closing rule book is
yet another approach to solving more of our intractable test problems. In the
case of a closing book, smart does not employ the closing book until the open-
ing book rules have failed. This allows ARC to focus the individuals searched,
in each affected island, toward problem areas which we know a priori to be
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difficult. Adding a closing book will increase the individuals evaluated; but,
each island can be tailored to search its own limited area of expertise for
common difficult-to-learn patterns that are known to be problematic. Fur-
thermore, without the closing book, even after billions of individuals searched
there was no convergence on the intractable problems; however, with the clos-
ing book there was convergence on some of the problems after only millions
of individuals searched.

The closing rule book is as follows, and the search results, with our closing
book, are shown in Table 4.

• (E12): f0(f1(f2(t0,t1),f3(t2,t3)),f4(f5(t4,t5),f6(t6,t7)))
• (E12.1): national(10,25)
• (E12.2): island(smart,10,25)
• // Opening Book
• (E12.3): where
• (E12.4): where ec() et()
• (E12.5): where f0(*) f1..6(lpass,*) ef(f1,f2,f3,f4,f5,f6) ec() et()
• (E12.6): where f0(*,square,sqrt,cube,cos,sin,tan,tanh,log,exp) f1..6(lpass,*)
• (E12.7): where op(lpass,rpass,*,/,cos,sin,tan,tanh) island(smart,gade,256,25,50)
• (E12.8): where f0(*,cos,sin,tan,tanh) f1..6(lpass,*)
• (E12.9): where f0(cos,sin,tan,tanh) ef(f0,f1,f2,f3) ev(v0,v1,v2,v3) ec(c0,c1,c2,c3)

et(t0,t1,t2,t3)
• (E12.10): where f0,f2,f5(*) f1,f4(cos,sin,tan,tanh) ef(f1,f4) ev(v1,v5) ec(c0,c4)

et() island(smart,256,25,10)
• (E12.11): where f0,f1,f4(+,-,*,/) f2,f3,f5,f6(cos,sin,tan,tanh) ev(v0,v2,v4,v6)

ec() et() island(smart,256,25,10)
• // Closing Book
• (E12.12): where f0(cos,sin,tan,tanh) f1(*) f2(*) f3(*) ef(f0) ev(v0,v2,v3)

ec(c1) et() island(smart,gade,1000,100,50,1000)
• (E12.13): where f0(cos,sin,tan,tanh) f1(*) f2(*) f3(lpass,*) ef(f0) ec(c1)

et() eb(b0) island(smart,gade,100,100,50,100)
• (E12.14): where f0(lpass,*,/) f1(cos,sin,tan,tanh) f2(*) f4(cos,sin,tan,tanh)

f5(*) ef(f0,f1,f4) ev(v1,v5) ec(c0,c4) et() island(weed,gade,1000,100,50,1000)
• (E12.15): where f0(+,-,*,/) f1(+,-,*,/) f2(cos,sin,tan,tanh) f3(cos,sin,tan,tanh)

f4(+,-,*,/) f5(cos,sin,tan,tanh) f6(cos,sin,tan,tanh) ev(v0,v2,v4,v6) ec()
et() eb(b0) island(smart,gade,1000,100,100,1000)

• (E12.16): where f0(lpass,*,+,/) f1(lpass,+) f2(*,psqrt,psquare,pcube,pquart)
f3(*,psqrt,psquare,pcube,pquart) f4(lpass,+) f5(*,psqrt,psquare,pcube,pquart)
f6(*,psqrt,psquare,pcube,pquart) ec(c0,c2,c4,c6) ev(v1,v3,v5,v7) et() eb(b0)
island(smart,gade,1000,100,100,100)

• (E12.17): where op(lpass,rpass,+,-,*,/) island(smart,gade,1000,256,200,1000)

A brief explanation of the search constraint rules in our Closing Book
is as follows. Rule (E12.12) tells ARC to look for three way cross correla-
tions capped with any of the trigonometric functions. Rule (E12.13) requests
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a search for all possible two way cross correlations capped with any of the
trigonometric functions. Rule (E12.14) requests a search for all possible con-
stants times variables capped with any of the trigonometric functions. Rule
(E12.15) requests a search for all possible products, sums, ratios, and differ-
ences of trigonometric singleton products or ratios. Rule (E12.16) requests a
search for all possible products, sums, and ratios of polynomials. Rule (E12.17)
requests a search for all possible arithmetic functions.

Table 4. Results with a closing book

Test WFFs Train-NLSE Train-TCE Test-NLSE Test-TCE
P01 .06K 0.00 0.00 0.00 0.00
P02 113K 0.00 0.00 0.00 0.00
P03 222.46K 0.00 0.00 0.00 0.00
P04 0.86K 0.00 0.00 0.00 0.00
P05 0.16K 0.00 0.00 0.00 0.00
P06 0.01K 0.00 0.00 0.00 0.00
P07 4.10K 0.00 0.00 0.00 0.00
P08 11.00K 0.00 0.00 0.00 0.00
P09 116.81K 0.00 0.00 0.00 0.00
P10 1.34M 0.00 0.00 0.00 0.00
P11 4.7M 0.00 0.00 0.00 0.00
P12 16.7M 0.99 0.47 1.00 0.49
P13 22.40K 0.00 0.00 0.00 0.00
P14 9.54K 0.00 0.00 0.00 0.00
P15 1.99K 0.00 0.00 0.00 0.00

We arrived at this closing rule book experimentally. It has been tailored
to the behavior of the ARC system plus the chosen operators. It has been
designed to capture a large number of commonly occurring test problems
without increasing computation resources excessively. Creating a closing book
is time consuming; but, it need only be created once for each SR system and
each operator set. Employing a closing book moves us one step forward toward
solving a broader range of more difficult test problems.

We see that, at least with ARC, with a closing rule book we have achieved
additional improvement with respect to these chosen test problems. Unfor-
tunately, we are far from asserting that ARC is absolutely accurate on ALL
possible test problems of one basis function and three grammar nodes in
depth. In fact, from copious end user experimentation, we know that ARC,
even with the current enhancements, cannot solve all of the possible 10162

test problems. The problem space is so large that end users routinely uncover
problems which return incorrect answers or fail to find even an acceptable
champion.
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The next step is clearly to find credible answers to some of the current
mysteries. Is it possible to identify the larger areas of more complicated in-
tractable problems within the 10162 search space? Are these problems isolated
all over the 10162 search space, or are they clustered together in sets amenable
to closing book island search specifications? How many identifiable intractable
problems clusters are there? What are the best approaches for solving each
identified problems set? Will each vendor be required to develop opening and
closing books specific to each of their systems and chosen grammars, or will
some, as of now unknown, automated method be discovered such as in (Ryan
2005) or as in (Spector 2010)?

Once we have found answers to the many current mysteries, verification
will be the next serious challenge. Is there some internationally acceptable
way to declare victory given the fact that we cannot hope to test all pos-
sible 10162 problems? The best situation would be to have the independent
scientific community supportive of SR claims. The worst situation would be
to have the independent scientific community skeptical of SR claims. What
are the necessary conditions for even hazarding an assertion that SR is abso-
lutely accurate on ALL possible test problems of one basis function and three
grammar nodes in depth?

2 Conclusion

The use of abstract grammars in symbolic regression provides the end user
with fine tuned control of the search process. Joint projects with end users
have pointed out that user control of both the search process and the fit-
ness measure will be essential for many applications. The use of opening and
closing books, and multiple island intelligent breeding with epigenome con-
straints, moves the entire discipline much closer to industrial ready for many
applications.

Nevertheless, state-of-the-art Symbolic Regression techniques continue to
suffer poor accuracy on very large categories of test problems even under the
most favorable minimalist assumptions.

The opportunity is unprecedented. If the symbolic regression community is
able to offer accuracy, even within the favorable minimalist assumptions of this
chapter, and if that accuracy is vetted or confirmed by an independent body
(distinct from the SR community), then symbolic regression will realize its true
potential. SR could be yet another machine learning technique (such as linear
regression, support vector machines, etc.) to offer a foundation from which
hard statistical assertions can be launched. Furthermore, we would finally
have realized the original dream of returning not just accurate coefficients
but accurate formulas as well.

The challenge is significant. It is unlikey that any single research team,
working alone, will be sufficient to meet the challenge. We will have to band
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together as a community, developing standardized test problems, and stan-
dardized grammars. More importantly we will have to reach out to the the-
oreticians in our GP discipline and in the mathematical and statistical com-
munities to establish some body of conditions whereby independent commu-
nities will be willing to undertake the task of confirming SR accuracy. And, of
course, first we, in the SR community, will have to work together to achieve
such accuracy.

It is not clear that opening and closing books are the final solution to our
accuracy problem. The most desirable situation would be to discover some
automated self-adaptive method.

What is clear is that if we, in the symbolic regression community, wish to
continue making the claim that we return accurate formulas; and, if we wish
to win the respect of other academic disciplines, then we will have to solve
our accuracy issues.
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